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Temporal growth of a parametric excitation by
a self-focused laser beam
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The effect of self-focusing of the pump laser beam on the temporal growth of a parametric excitation
has been investinated in the paraxial region. The two equations for the sianal and idler modes have been
decoupled by assuming the near self-trapping condition and a linearly varying phase mismatch. By
employing the WKBJ approximation, it is found that the growth rate is a strong function of the radial
intensity inhomogeneity of the pump laser beam. The condition for validity of the first-order approxi-
mate theory employed here has been derived.

1. Introduction

The subject of three-wave interaction. commonly known as parametric excitation [1] has heen widely
investigated. A variety of crystalline and liquid media [2, 3] are now well known for their efficiency in
parametric amplification of desired modes. The study of parametric excitation in plasmas has now be-
come indispensable because of its relevance to Iaser-driven fusion [4]. Inhomogeneity [5], turbulence
[6] and boundedness 7] of the medium influence the growth rate of any parametric excitation by
varying the phase muismatch. Moreover, inhomogeneity of the medium 8] and non-uniformity of the
pump laser beam [9] can influence this growth rate also by varying the coupling coefficient.

A transversely non-uniform laser beam in a non-inear medium undergoes the phenomenon of self-
focusing [10-12] and as a result the laser intensity varies with the propagation distance. In this paper.
the effect of self-focusing of the pump laser beam on the temparal growth of a parametric excitation
has been investigated.

In Section 2, the relevant equations from the theory of self-focusing have been stated and then two
dynamic equations for the signal and idler modes of an arbitrary parametric excitation have been set up.
These two equations have been decoupled by assuming the near self-trapping condition for the pump
laser beam and a linearly varying phase mismatch for the parametric excitation. In Section 3, the single-
eigenvalue equation obtained upon decoupling has been sclved under the WKBJ approximation. An
analytic expression has been obtained for the ‘growth-rate parameter’ from which the temporal growth
rate of the parametric excitation can be easily determined. A graph has been plotted to show the variation
of this parameter with the ‘self-focusing parameter’. In Section 4, a discussion on characteristics of this
graph, threshold intensity of the parametric excitation, validity of the assumed first-order approximation
and quantization nature of the temporal growth rate has been presented. It is concluded that the tem-
poral growth rate is a strong function of the radial intensity inhomogeneity of the pump laser beam.
This strong dependence is not obtained when the pump laser beam is sharply defocused or sharply
focused. The results in the cases of back scattering and forward scattering are quite opposite in nature.

The present investigation was carried out before the author noticed two similar investigations [8. 9],
In one [8] of these two, the investigation has not been carried out as thoroughly as the present investi-
gation. In the other one [%], a particular type of parametric excitation has been investigated rigorously,
but without illustrating the results by a relevant graph.
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2. Basic equations
The diclectric constant of a non-linear medivm iradiated by a modelately inisuse laser beawn is given by

[10-12]

€ = & T &[E (1)
where ey and e, depend upon the medium parameters and the laser frequency c. The electric field of a
laser beam, with a radially Gaussian intensity profile and travelling along the z-axis in the medium with
the above mentioned dielectric constant is given by

~ F vt ] _
E(r, z, 1) = E)T(ﬁexp —m+z[¢'(r, 2yt klz —iwi}. 2)
Here k(= v/eocofc) is the linear wave number
with Or, 2) = kr*[[2(z* + 25)} + 6(2) (3)
d 23t — 2@ —2F = (K’rg) —e3E5{(2e¢r™) ()]
an.

(2} = [keE§i(deo) — L/(krd)] (zaelz) arctan (zfz4¢)
is the non-linear part of the wave number; and
fi@y = (1 +2%28)' 72 (5}

is the beamwidth parameter. The beam gets defocused, trapped or focused depending upon whether
230 = or <0.

The expression for E(7, z, £} (Equation 2) is valid only in the paraxial region (#€ #g) whore Akhmanov
et al.’s [12] treatment is valid. The expression {Equation 5) for f(z) restricts the validity of the present
investigation to a laser beam of not very high intensity and to a small distance of propagation. The

dielectric constant saturates [11, 12] as the intensity |E{* becomes very large. Consequently, an analytic
expreasion for the beamwidth paramcter f(2) is not available in the casc of a lascr beam of a very high
intensity and a large distance of propagation,

Now let the electric vectors associated with the signal and idler modes (! = 1, 2) excited by the pre-
viousty mentioned pump laser beam, in the paraxiai region (r € #y), be given by

Ei(r =0,z 1) = EE,ai(z) exp §[di(2) + K]z + (g ~icap)t. (6)
Here the linear wave numbers k; and frequencies o, satisfy the conservation rules [1-3]

ki+ks=% and witws = w (7)

whereas the non-linear parts ¢;(z) allow a mismatch

Ad(z) = ¢z} — [¢1(2) + $2(2)]. (8)

Due to their coupling with the pump laser beam, the signa! and idler modes gain in energy. The gain
obviously depends upon the nature of the medium and the parametric excitation under consideration.
The gain leads to spatial varjation of amplitudes of the signat and idler modes, shift in the frequencies of
the two modes, and temporal growth of amplitudes of the two modes. These tluee consequences are
described by the refative amplitude functions ;(z), imaginary part of the complex function g, and real
part of g respectively. The form exp [Re (g)¢] for the temporal growth is based on the assumptions that
the temporal growths of the two modes are coupled so that they are the same, ate exponential so that
[Re {g)f] occurs as an cxponent, and are uniform so that g is independent of z, These assum ptions arc
quite justified if the pump intensity is not very high so that saturation of the parametric excitation does
not come into the picture.

The relative amplitude functions 2,(2) satisfy, in the paraxial region and under the linearization
approximation, the coupled rute equations [1, 5, &]
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d g+ R X .
( = v )al(zJ =7 ﬂ.z)ao(z) exp [{Ad(z)z] (9)

(dd? o ) 610 = 7o) oxp 1861 o

Here v; and ¥; are the damping rates and the group velocities along the z-axis, of the excited modes; and
'y is the ‘homogeneous’ coupling coefficient which varies linearly with £, the proportionality factor
depending upon the parametric excitation under consideration, It has been assumed here that the laser-
induced spatial dependence of the parameters appearing in the expression for Ty is negligible compared
to that of f(z). The linearization approximation employed above is justified when the relative amplitude
functions vary slowly in space.

In the first-order approximation, the pump laser beam will be assumed to be approximately self-
trapped so that 7% ~ 0, Then f{(z) is a slowly varying function of z, and hence while decoupling
Equations 9 and 10, the term

u(z) = (d/dz) In f(z)

may be neglected. Mofeover, the mismatch function A¢(z) will be assumed to be independent of z and
set equal to Ad,. This is reasonable because of the cases of interest, the wave numher mismatch
is negligible or a slowly/linearly varying function of z. It can now be shown that the transformations [6]

a,(z)exp (— {Ado %) = g(z) exp (iAqbz % ) = ¥(z)exp [—(g_lt_'f_l + %:’) ZE ] (11)
1 1

can reduce Equations 9 and 10 into a single equation

dZ
[d22+ W(z)} z) =0 {t2)
where 2 + 5
+ ¥
W(z) = _ 0 - g V1+g __Vz_l_l o (13)
Vl Vz(]_ +z /de) 2V1 2V2 2
and V, = -- V; . For the more commen case of back scattering V; is positive; V; having been assumed

to be positive.

3. Growth rate

Because of the assumed slow z dependence of £(z), W(z) is a slowly varying function of z, and hence a
WKBI solution [13] of Equation 12 is reasonable. Thus

¥(z) = Ci[W)] ™ exp {ifJ.\/[W(Z)] dZ] (14)

where C, are the constant coefficients determined by boundary conditions. The turning pointsz = * z,
where W(z) vanishes are
gty gty iAd 2 T3 12
z, =z —= =—1f . (15)
2V, :zV2 2 Vi Vs

According to the WKBJ theory [13] of reflection inside a potential well, the eigenvalues g, satisfy the
condition

2t

[VW@ dz = @n+ 1y (16)
Q

where 7 is a non-negative integer. This gives

gli—(& o 8 tra_ iy N . @nt 1)’ (@/a)* Vi V,
2V, 27, 2 ri

(17)

13

F&Z?n



Temporal growth of a parametric excitation

where the notation

wie 4
B(x) [ '[ [(1 . sinze)_”z —(] — sinz g)l.ﬂ] da

0

{i

[Kex)— &)1 (18}
has beent used [or convenicnce. Here K (%) and &(x) are the well-known complete elliptic functions of
the first and second kind [14].

The following analytic expression for g, , whose real part is the temporal growth rate of the para-
metric excitation and imaginary part is the frequency shift, then results

gt = [1+B7 (rzd)”” (19)

where _ _
a = [\/(Vz/V1)+\/(V1/V2)]/2F0
B = [Vn/(Vz/Vl)*“Vz\/(foT’_rz)+fﬂ¢o\/(V1fz)]/2Fo
Yo = — (2 + 1 (/4Y 1, V2 [T 20

and B! stands for the inverse function corresponding te B, From physical reasoning (by carrying out
the foregoing analysis for 233 = — 233), it is found that B™' (— ¥.2af) = — B~} (y,233). For convenience,
the quantities (v,24%) and (g, + §) will be termed as ‘self-focusing parameter” and ‘growth-rate para-
meter’ respectively. In the absence of self-focusing, i.¢. when the diffraction effect is balanced by the
focusing non-linearity, ¥, zzt = 0and (g,a + f)=1. The quantity

Q = {100(g,e + B — 1)(1 — Re B)/{(1 — Re p)* +(Im B)°] }

is the percentage increase in the temporal growth rate (Re g,) when the effect of self-focusing is taken
into agcount,

151 {+00,42)
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Fiyure 1 'Growth rate parametar' {(g,o + £) warens ‘self-focusing parameater’ (‘)‘,,2;1%:'.
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In Fig. 1, the ‘growth-rate parameter’ (g, + §) has been plotted versus the ‘self-focusing parameter’
(%.23%). Nate that the graph is separahle into two parts, namely upper and lower parts corresponding
to (gs + ) > 1 and < 1. The upper (flower) part corresponds to the case of focusing (,r'def()cusmg)
and back scattering i.e. 3 > 0 or of defocusing (/focusing) and forward scattering i.e. V5 < 0.

4. Discussion
In the region |y,z3: = 0, where the first-order approximate theory may be quite reasonable, the graph
{gne + B) versus (y,2g;) has a remarkably large slope, This means that in the near self- -trapping condition,
the temporal growth rate (Re g, ) varies drastically with the ‘self-focusing parameter’ (v,z32). For example
in the case of focusing and back scattering (/defocusing and forward seattering) with (v,,z32) = 0-1, the
graph gives (g, & + 8) = 1-059 which implies a 5-9% increase in its conventional value of unity calculated
for (v,2g2) = 0, or equivalently {5-9 (1 — Re 8)/[(1 — Ref)? + (Im §)*] % increase in the temporal
growth rate (Re g, ). Similarly, in the case of defocusing and back scattering (/focusing and forward
scattering) with (v,243) = — Q-1 the graph gives (g, + 8) = 0:937 which implies a 6-3% decrease in its
conventional value, or equivalently {6-3 (1 —Re §)/[(1 — Re $)* + (Im f)*] 1% decrease in the temporal
growth rate. Both of these cases thus lead to appreciable changes in the temporal growth rate.

The values # O-1 for the *self-focusing parameter’ (y,zg}) are realizable in a variety of cases. As an
example, consider [1] a parametric excitation at frequencies ¢y = 633 =9-d v 10¥ ¢! by a Nd-glase
laser beam of frequency w = 1-88 x 10" 5™ and of intensity K3 =200ergem™ in a LiNbO, crystal
for which eg = 4-8, &5 {due to thermal changes) = 107% cm® erg™ and second-order suscept1bﬂ1ty
tensor component dys = 1-3 x 107 v/ (cm®erg™)'"2. These parameters give 7, = 2-5 cm?. Consequently
for (’Y,,Zar) to become + -1 and 0-1, the mean heamwidth rading #; of the laser beam has to be
1:58 x 10”3 em and 1-55 x 102 ¢m respectively. Laser beams of these r, values are commonly avail-
able, It is thus concluded that the effect of self-focusing {defocusing or focusing) on the temporal growth
rate of the parametric excitation is appreciable in a variety of experimentally realizable situation.

The threshold intensity fu. of the parametric excitation nnder ennsidaration is determined by setting
the complex temporal growth-rate function g, equal to zero in Equation 19. This gives the transcen-
dental equation

&/18) { . [(fm . ] ]
= 11+B" i . 21
'\/Ith I df_ ( )
In the exact self-trapping case, i.e. for z3; = 0, this gives the usual result
fmo = (1/4) |VL\/(I72/V1)+ Vz\/(Vl/I‘_rz) + m%\/( Vy I/_'z)|2 (22)

which, as expected, is independent of the transverse intensity profile of the Tager heam Femation 71 ran
be solved for Iy by the usual graph cross-over technique. For example, on Fig. 1, I3, corresponds to the
cross-over point of the already plotted graph of [L + 87! (y,zg})] V'? with a new graph of

{2+ N Vs — Ao) 2g1/ (20 + D] oz ).
It is apparent that in the near scif-trapping condition, the threshold intensity varies appreciably with
parameters appearing in the expression for zg.

In Fig. 1, observe that the ‘growth-rate parameter’ (g, + ) has upper and lower saturation values
+/2 and O as the ‘self-focusing parameter’ (y,z4%) approaches = =. The upper (/lower) saturation corre-
sponds to the case of complete focusing (/defocusing) and back scattering or complete defocusing
(ffocusing) and forward scattering. Hence the first-order approximate theory applicable to the near
self-trapping region is not expected to remain valid in these saturation regions. In order to get rid of this
limitation, the term u(z} = (d/dz} In f(z) should be incorporated in the foregoing theory. With this term
included, it is found that Equations 11-13 need to be replaced hy

a,(z) o \z] _ de ootz (e gtz
1y oer-ia0)] - 50 ([ sy ]2 - o -2
(23)
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d'Z
(_d22 + Iﬂ(z)) Tz = 0 (24)
and 2 X
+ + A
W) = _ 0 o —— g Vl+8 _,Vz_{_(_l): H(Z)+I $o ’ (25)
VI Vg(] +z /de) . 2V1 21"2 2 2

The WKBJ approximation is still reasonable in the intermediate region where 253 and [du(z)/dz] are not
very large. The foregoing first-order approximate treatment is valid, i.e. the term p(z) may be neglected,

if and only if
SRV
"

This condition can be satisfied when the signal and idier modes are slowly propagating and easily attenu-
able in the region not far away from the self-trapping of the pump laser beam.

The present investigation is valid in the paraxial region and when (d/dz) In Dg <€ z5} so that the
spatial variation of Iy may be ncglected. The present investigation may be extended to include the
non-paraxial region and the effect of spatial variations of I'y. However, the analysis would then be-
come much more complicated than the present one and analytic results would not be possible.,

Notec the important role now playced by the quantum number # in the expressions for 1, and g,
and also note that this # does not come inte the picture for a transversely homogeneous or a self-
trapped transversely inhomogeneous laser beam. It should be recalled that g, is complex so that the
‘yn temporal growth rate’ corresponds to the parametric excitation at the “ny, frequency shift’,

It is concluded from the present investigation that the temporal growth rate of a parametric exci-
tation varies significantly with the transverse intensity inhomogeneity of the pump laser beam, and
hence the effect of self-focusing may not be neglected. The first-order approximation employed here
is valid when the signal and idler modes are slowly propagating and-easily attenuable in the region not
far away from the aclf-trapping of the pump lascr beam.

(26)

pz) <
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