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We have investigated how the presence of an electromagnetic beam and a static
magnetic field influences the ion-acoustic solitons in a plasma. A modified KAV
equation is derived in which the electromagnetic field plays the role of a source
term. By using the perturbation analysis technique, it is shown that a homo-
geneous electromagnetic beam does not destabilize the ion-acoustic solitons;
it reduces the amplitude, but not the velocity, of the solitons. However, any
inhomogeneity in the electromagnetic field intensity does destabilize the ion-
acoustic solitons; albeit not to an appreciable extent for typical cases.

1. Introduction

The ion-acoustic solitons (Davidson 1972; Karpman 1975) have been widely
discassed, but it is only recently that some studies have been made on important
aspocts like inherent two-dimemsivnality (Oginve & Takeda 1975), kinetics
{(Zakharov 1971}, magnetically induced shape-distortion (Zakharov & Kuznetsov
1974), interaction with an electromagnetic beam (Kaw & Nishikawa 1975), effect
of inhomogeneity (Nishikawa & Kaw 1975), effect of ion-temperature (Tagare
1975), and quantum field-theoretic formulation (Goldstone & Jackiw 1475).
Experimental studies (Watanabe 1975) do indicate the significance of the con-
cept of solitons in an understanding of the plasma turbulence (Ichimaru 1975).

In the present paper, we have investigated how the presence of an electro-
magnetic beam and & longitudinal static magnetic field influences the ion-
acoustic solitons in a plasma. The investigation is based primarily on Zakharov &
Kuznetsov’s (1974) investigation on the magnetically induced shape-distortion
and on Kaw & Nishikawa’s (1975) investigation on the interaction with an
electromagnetic beam.

In §2, we discuss the basic equations employed in the analysis of the problem,
An equation is obtained for the ion velocity. In § 3, we have considered the small
velocity case investigated earlier by Kaw & Nishikawa (1975). The eorresponding
solution represents a propagating filamentary electromagnetic beam. In §4, we
have reduced the forementioned equation to & modified KdV equation by
assuming that the ion motion is confined to some specific direction. In this
equation, the electromagnetic beam intensity plays the role of a source torm. In
§5, we employ the perturbation analysis technique to solve the modified KdV
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equation. We have assumed the static magnetic field to he small enough not to
cause considerable transverse inhomogeneity in the ion-aconstic solitons, and the
electromagnetic beam to be weak enough for the perturbation analysis to be
valid. This analysis shows that the presence of a homogeneous clectromagnetic
ficld does not destabilize the ion-acoustic solitons; it reduces the amplitude, but
not the velocity, of the solitons. On the other hand, any inhomogenocity in the
electromagnetic beam-intensity destabilizes the ion-acoustio solitons ; this
destabilization is, however, not appreciable in typical caszes.

In §6, we have considered the electromagnetic beam to be transversely
(Ganssian, go that it bocomes solf focused as it propagates througl the plasia,
We have quoted & simple analytic expression for the heam intensity by assuming
the ponderomotive force on electrons to be the only mechanism for self-focusing.
Then by assuming that the ion-acoustic solitons travel along the direction of
propagation of the clectromagnetic Loaw (1.¢. the direction of the static magnetic
field), we have analysed the perturbation in the solitons due to such s self-
focused electromagnetic beam. In §7, the foregoing analytical results (based on
the perturbation analysis) have been illustrated with some relevant graphs for
typical paraneters,

2. Basic equations
The electric field E(r,?) of an electromagnetic beam propagating in a plasma

obeys the wave equation
[ —c*V2+ 2] E = 0, (2.1)

whera the square of the Ioeal plasma froquoney

wp(t,8) = don,(r,t) e2lm = wdgm,(r,8)]n,

= who(L + (T, 1)jng) = )+ Swi(r,1). (2.2)
Let us take this electric Held to be of the form
E(r,t) = 28(r, t)expi[kz — wt+8(r, )], (2.3)

where the field envelope &(r. f) and the phase #(r, £} are real and obey the coupled
equations

(88 — cVE + 209(2, ) + 2% (3, 0) — (8, 6)2 + (VO + 8wl]& = 0, (2.4)
[ 0) — c3(V20) — 208, + c2kd, — (7, ) 7, + c2(VH) . V)] & — 0, (2.5)

and where the linear wavenumber
k = (0% — 2ol (2.6)

We shall assume the ions of the plasma to be non-relativistic so that the magnetic
field associated with the electromagnetic beam will be neglected. However, we
shall include the contribution from the static magnetic field H, in the following
treatment. The nol clectric field, i.e, the electric fisld due to the beam plus the
density perturbations, will be represented as usual by (— V).
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Let ug neglect the electron inertia and use the isothermal equation of state
P, = n,«T, where « is the Boltzmann constant. We then have, in the quasi-steady
state, the force equation (Kaw & Nishikawa 1975)

eV —«T,V(lnn,) — (22mew?) VE2 = 0. 2.7
This, upon integration, yields the Boltzmann distribution
n, = 0o exXp [ed/xT, — E%2[2ma*T,). (2.8)

(Deviation from the assumed isothermality of the electrons will introduce

(Tagare 1975) half-integral powers of ¢ in the power series expansion of n,.)
Poiszon’s equation then becomes

V3¢ = dme{n,exp [e@fxT, — &% {2maPrT,] —n). (2.9)

Moreover, we have the continuity, momentum and pressure equations (Tagare
1975),

&n+V.mV)=10, (2.10)
¥+ (V.V)V =—(/M)V$+Vxwy,—(T[nl,)Vp, (2.11)

and
8, p+(V.V)p+ypV.V =0. (2.12)

Here #(r,t), V(r,8), M, w4y, = Hye/Me, T and p(r,t) are respectively the num-
ber density, velacity, mass, eyclotran frequency, temperature and pressure of
the ions, In the present case of isothermal electrons, the free electron tempora-
ture 7, is the same as 7. In (2.12),

y=pnT =3
for adiabatic ion motion.
For long wavelength [A » Debye length Ay, = (¢7,f4mn,¢%)}] and weak non-
linearity (8n, <€ n,), (2.9) yields

P (142572 [Qéi +%—i(%)ﬁ], (2.13)

by L)
xT, mekd, n, 2\ 1n

We shall agsume the ion fluid to be cold go that Vp = 0 and (2.12) is then not
required. Eliminating ¢ from {2.11) by using (2.13), we get.

2.2 2 2
IR TR R L AL

SMmat M mg 2H \'my ":?} = Vxwg,

(2.14)
Note that this equation does not have a ‘divergence form’. It therefore implies
that the ion momentum is, in general, not conserved. Consequently, unlike the
case of no static magnetic field, a soliton solution ean exist only if the ion motion
is assumed to be confined to some particular direction, Also note that (2.14) is
coupled with (2.10), (2.4) and (2.5). It is necessary to get rid of this coupling
between the equations, in order to make the problem solvable.
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3. Small velocity case

Let us first consider a particular case investigated by Kaw & Nishikawa (1975).
Let H) = 0. When the density perturbations are small {i.¢. n, ~ n,) and the field
envelope & does not vary appreciably with time, one obtains (Kaw & Nishikawa
1975)

[0} — (T / BE) V%) 8n, ~ (<T0) M) V2&2. (3.1)

This equation describes an ion wave propagating in a direction depending upon
the ponderomotivo foreo due to the cloctromagnotic beam. Lot us look for the
solitons propagating with a constant velocity U (with U < ¢) and introduce a new
variable

R =r-UL (3.2)
Equation (2.1) then gives
én, = — &1 - U2 M [«T)), {(3.3)

and (2 5) ynelds, to the firet order approximation,
6 = wR.Uj(c*— T2). (3.4)

Substitnting (3.3) and {2.4) into (2.4), we ahtain

&=0. (3.5)

{V2 3 (2w Uk — 22 Uﬂ[cg) why &2
F-07 )T n - URMKT) (= U

Equation (3.5) is a type of nonlinear Schrédinger equation. Let us consider
only the one-dimensional version of it (Kaw & Nishikawa 1975), and put

Vie@®, U=4U and R=5Y = §(y-Ut. (3.6)

Then the solution of (3.5), under the boundary condition that the solution and its
first derivative vanish at R — 1 c0, may be written as

& = [2(20 Tk — 20T e®) (1 — U MIxTL) (o)) ]*

x gech [(20){}']0—2&)302/69)* Y]. (3.7)

- Tre

T'his solution represents a propagating filamentary electromagnetic beam.

4. Extended KdV équation

In order to simplify (2.14), let us assume that the waves described by this
equation travel only in some specific direction, say {. This arbitrary direction {
may be the direction of the static magnetic field or the y axis depending upon
whether Hf 3 £2 or H} < &2, W shall morcover assume that the electric field
intensity &2 is already known so that it need not be derived along with (2.14), and
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that A% V28* < &% Following the arguments given by Zakharov & Kuznetsov
{1974), it can be shown that

2 2 n2 2 2
8,V +c, a,{V [1+’128 +AH+’1”V ]V 2:;1%] 0, (4.1)

where the ion-sound speed ¢, = («7,/ M) and
Ay = LBy for,. (4.2)
We shall now employ the following dimensionless variables which form a
co-ordinate system moving with velocity /.
I—c,t r—r.!
= T
by, )
T — —23)—‘ — t(nnocﬂfﬂf)’:‘, W — Eé_

a
and

&2
- 4.3
Y dmex T, (4.3)
We can then write (4.1) in the dimensionless form

8, %+ 8(u® + VEu+7%) = 0. {(4.4)

5. Perturbation analysis
No analytic solution of (4.4) exists. However, the KXdV equation

o WHa (Wit kW) =0 (5.1}
does have an analytic solution: the soliton solution
= (3p/2) sech? [ X ph/2], (5.2)

where X = (§—p7) and g is a parameter determining the amplitude, velocity
and width of the soliton. Let us assume that it is possible to transform (4.4) into
(5.1). This is possible if (but not only if) the following conditions are satisfied.

o, W=20u, (5.3)
W—ut, (5.4
and
Y2t Buyr+ 3¢ — Vipu+ (5.5)
In the first order approximation, let us assume that ¢y = V3.4 = 0, so that
(5.5), in conjunction with (5.3) and (5.4), gives
W= Uy by = +(TF 4720, (5.6)
so that
Uy =+ (W2—p2)k, (8.7)

We shall assume that 2 < U%, so that
~ Y22 (5.8)
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In the second-order approximation, we write (5.5) as

11!1-2 + T ofr, = T2, (5.9
where
A T
~ oy VE(W2— yht - (2yH 2. (5.10)
Equation (5.9) yields
U, = +(We_T2), (5.11)

G¢. Self-focusing

In the presence of an inhomogeneous electromagnetic beam, the electrons of
the plasma experience a ponderomotive force (Lindl & Kaw 1971). Congequently
a beam whose intensity profile is radially decreasing becomes self-focnsed (Sodha
et al. 1976). Weshall consider the radial intensity profile of the beam to be Gaussian,
and consider only the ponderomotive foree on the electrons as the nonlinear
mechanism influencing the intensity profile of the beam. It can be shown (Sodha
et al. 1976) that v2 may be expressed in the form

y? = yiexp (—p/obf?); (6.1)

Yo=7vabr =0, p?=2a2+¢?

where

po = mean beam width at z = 0, and the beam width parameter flz), for p < py
and Z < Z;, is given by
f2=1 —‘ZEIZ?’ (6.2)
where
2} = (0" — 0§ P [W50 Vo[ Z — ¢* /0] - (0.3)
We shall now assume that the ion-acoustic waves travel in the direction of
propagation of the electromagnetic beam ie. { =%. We shall tako the static
magnetic ficld Hy to be longitudinal i.e. H, — 2H,, so that

A = 3oty = (MK T{e2H)).

Hence
VW2 =y = (i + Ab) p10,p0, (W2 =)
_ (g +Ap)y? [2__29_2___“.102_7?_] (6.4)
4 PP WE—v T pif* e (WP =yl

ar

’ D a2z

8247 — A58 72 4 ] —1], 6.5

=% T e Clrm o

7. Discussion
In the perturbation analysis in §5, we neglected the magnetically induced
transverse inhomogeneity of the ion-acoustic solitons in the absence of the

electromagnetic field. This type of inhomogeneity was studied earlier by Zakha-
rov & Kuznoteov (1074) and was shown not to destabilize the ion-aconstic

solitons. Qur treatment is valid for the static magnetic field small enough to
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Figure 3. Uyversus p. (@) Z = 0, X =0, (0 Z = 14, X =0,(c) 2= 0,X = ,{d)YZ =0,
X=21{)2Z2=14X=2{lZ=0X =4

allow g to take V2 a,,_q = 0. Given this, we find from (5.7) that the presence
of a homogeneous electromagnetic field does not destabilize the ion-acoustic
solitons; it reduces the amplitude, but not the velocity, of the solitons. On the
other hand, any inhomogeneity in the electromagnetic field intensity destabilizes
the ion-acoustie solitons; the ion-acoustin waves are in the strictest sense no
longer solitary waves, since they now depend not only on X = (£ —#7) but also on
£ separately. A positive spatial gradient in the electromagnetic field intensity
enhances the amplitude of the ion-acoustic solitons.

In order to illustrate the above analytical rosults, we have plotted, in figures

1, 2, and 3, the graphs of U, for the following parameters:

ng = 107 cem-3,
T. =10°K,

H, = 100Ganss,
Mm = 2000,

p =03,

&2 = 10%ergfoms,
Po =5 cmi,

@ = 10'%rad/sec.

Figures 1,2 and 3 give U,versus X, Z and prespectively. These graphs, a3 expected,
indicate that [} falle off at the focal point and increases with the radinl distanece.
For the typical parameters we have chosen, we find, however, that, in most of the
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region, the solitons are not perturbed appreciably and hence the destabilization
is not significant. This shows the inherent stability of the solitons against external
perturbations,

We therefore conclude from the present investigation that the ion-acoustic
solitons are reduced in amplitude in a homogeneous electromagnetic field and are
destabilized in an inhomogeneous electromagnetic field in such a way that positive
spatial gradients in the electromagnetic field intensity enhance the amplitudes of
the solitons. In most of the region, under typical parameters, the solitons are not
destabilized very much.
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