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Abstract. This paper presents an investigation on the effect of transverse non-uniformity
on the parametric interaction of radially gaussian modes of arbitrary type in the absence
of self-focusing. The propagation-distance dependences of the real-valued axial ampli-
tudes, phases, beamwidth parameters and phase gradients have been derived by using the
variational technique. The analysis has been numerically illustrated by considering the
stimulated Raman scatfering in a plasma. It is seen that the pump mode propagates like
a trapped filament whereas the remaiing modes undergo aperiodic focusing or defocus-
ing on account of the parametric-interaction-induced energy exchange. In a particular
case, in which the pnmp mode is much narrower than the remaining modes, all the
modes are seen to propagate like trapped filaments.

1. Intreduction

The phenomenon of parametric excitation (Louisell 1962, Bloembergen 1968, Yariv 1975)
has a long and interesting history. Recently some investigations (Sodha et af 1973,
Patel 1978) have dealt with the parametric interaction of radiaily gaussian modes.
However. they are primarily concerned with the effect of self-foeusing (Shen 1975,
Marburger 1975, Sodha et ol 1978), which occurs when the dielectric constant depends on
the intensity. To the best of the authors’ knowledge, so far therc has been no systematic
investigation on the effect of transverse non-uniformity on the parametric interaction in
the absence of self-focusing. The present investigation deals with the parametyic inter-
action of radially gaussian modes in the absence of self-focusing and is concerned with
the plausibility of focusing-defocusing of modes due to the parametric-interaction-
induced energy exchange.

Section 2 opens with the wave equations describing the parametric interaction of three
modes of arbitrary type. The equations are based on the assumptions of coaxial propa-
gation, monochromaticity and frequency-matching of the modes. Assuming the modes
to have radially gaussian intensity-profiles, the variational technique (Anderson and
Bonnedal 1979 has been emploved to simplify the coupled partial differential eqnations
for the complex-valued amplitudes. The resulting equations are twelve coupled second-
order ordinary differential equations for the real-valued axial amplitudes, phases, beam-
width parameters and phase gradients of the modes. Scction 3 simplifies the foregoing
analysis by making the additional assumption of wavenumber-matching of the mndes.
The resulting equations are twelve coupled first-order ordinary differential equations.
Section 4 presents numerical results corresponding to the phenomenon of stimulated
Raman scattering in a plasma (Forslund er af 1975, Thompson and Simon 1976).
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It is seen that the real-valued axial amplitudes of the modes vary periodically with the
propagation distancs and indicate no influence of the transverse nen-uniformity of the
modes. The beamwidth parameter of the pump mode does not undergo any variation
with the propagation distance; however, the beamwidth parameters of the remaining
(i.e. signal and idler) modes undergo a significant amount of aperiodic focusing or
defocusing, The variations of the phase gradients of the modes are seen to be cioscly
related to the variations of the beamwidth parameters. In a particular case in which the
pump mode is much narrower than the remaining modes, all the modes are seen to
propagate like trapped filaments.

2. Wavenumbers not matched

Tt will he assumed that the modes undergoing parametric interaction propagate along
the positive z axis and that all the modes have axisymmetric beam-profiles. Thus z will
denote the distance of propagation and r=(x2+y 2)1/2 will denote the radial coordinate
of the cylindrical coordinate system. The temporal variations of the modes will be
assumed to be strictly sinusoidal. The complex-valued time-dependent amplitudes
(¢, r, 2) (where j=1, 2, 3) are then expressed in the form

Bi(t, r, 2)=Ws{r, 2) exp ( —iest). 2.1

The modes will be assumed to be temporally resonant so that the frequency-matching
condition

Y ay=an+wztwz=0 (2.2)
is satisfied.

In contrast 1o the earlier Investigations (Sodha er af 1975, Patel 1978), the present
investigation is aimed at checking whether the transversely non-uniform modes can be
focused/defocused solely on account of the parametric-interaction-induced energy
exchange. In view of this, it will be assumed that there is no intensity-dependent (Shen
1975, Marburger 1973, Sodha er af 1978) variation of the medium which may lead 1o
intensity-coupling of the modes. Under these conditions, the time-independent complex-
valued amplitudes ¥y{r, z) are governed by the following (Louisell 1962, Bloembergen
1968, Yariv 1975) set of coupled partial differential equations:

d & o2
(lr ar a +a 2+k1 )T1=M11{’2*T3* (2.30)
(1 2 a b ﬁ—l—ks )IF2=M2"P‘3*‘F1* (23b)

r dr or oz¢

18 a a2
(rar a a 2+k3 )IF3=M3‘F1*‘F2*. (2.36‘)

The ‘dispersion-characterising quantities’ k;2 (where f=1, 2, 3) and the cdupling co-
efficients M; are real-valued constants which do not depend on the intensity ['F[2.

Except in a few simple cases, equations (2.3) cannot be solved unless some form of
the solutions Vs (r, z) is presumed beforehand. If the modes are initially radially gaussian
and do not undergo any drastic modifications in the course of propagation, then the
solutions of equations (2.3) may be presumed to be of the form

IFj' =y eXp (i 9} - )tj}‘ 2. itpﬂ‘z). (2 . 4)
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The axial amplitudes y;, phases 9}, beamwidth parameters A; and phase gradients ¢y
are z-dependent real quantities. The exponent appearing in equation (2.4) does not
involve terms containing r#, ¢ etc. This is an approximation which simplifies the analysis
to a great extent and is reasonable in the ‘macroscopic-average’ sense (Marburger and
Dawes 1968).

Equations {2.3) can be solved by the AKhmanov approach, which is well Xknown in
the literature on selfv-focusing (Shen 1975, Marburger 1973, Sodha et al 1978). However,
the Akhmanov approach is of very limited validity. Recently, a better approach (Ander-
son and Bonnedal 1979) based on the vartational principle (Fox 1960) has been adopted
in studying the self-focusing phenomenon, The variatonal technique fits the present
problem, The technique is as follows: equations (2.3) are expressed as the Buler-
Lagrange eguations

5 a5 A _ A @.5)

Br 3@¥or) " 0z 3@y 0% '
The Lagrangian

L(8Fs*[or, O ;for, DV ¥ [0z, 0F;/0z, Wik, Wy j=1,2,3)
is integrated to obtain

7]

= (xp, O3, A 953 f=1, 2, 3):[0 L dr. (2.6)
The integrated Lagrangian obeys the new Euler-Lagrange equations

d 0.2 oL2 ( 2.7)

dz 3(day/dz) 8oy
where j=1, 2, 3 and « stands for y, 8, A, ¢.

This wvariational technique {Anderson and Bonnedal 1079) leads to the following
twelve coupled second-order ordinary differential equations for «; (where j=1, 2, 3):

d2y;  4MuxAs? A A% g2
@zm x()‘z‘f'qﬁ’z)—()‘z“‘?’z) C- % —zd| @S

Bl @] e

iy, s [(30
dz2 A (A +e?)? A

—2/\) oC+ ( :} (/\2+tp2)—*()t3—-¢g)) S]

1 d)(; dq’n_.; ? dx.f dnqj
R kb Sy . it SO 2.9
M2dz dz oy dz dz i @9

dz)t;_ 4M5X‘)"13 Ii()\ _ a_ 2) —()‘2_{_(;,2_ ) ]
3ot (O 4 B I‘(/'112+r;32) 2(x2—9Y)| C X 42 ¢S

2 daj)z_(dw)z] Aoty 2 X dX ., d6; dey
+i}[(ﬁ? @) [T T e e @Y
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d?g;  AMx s [().2—{—(;:2 A ‘
Jz® _Xje(?taﬂ"q)“)“ X —4A)oC+ W()l2+¢,2)_u2()(2_q32) h

2 dys dyy, 4 diyde; , , db;d)

Tpd de Thdr a Tra @ TR @.11

The following notations have been used herg;
(0 B, A, py=(xixaxs, 01+ 02+ 83, A+ Ao+ A3, @1+ o+ s) (2.12)
(C, §)=(cos 8, sin 9). ) (2.13)

Equations (2.8)~(2.11) can be numerically solved (Scarborough 1966, Davis and
Polonsky 1972) by using the Runge-Kutta method. As boundary conditions, the values
of 2(z=0) and (dwy/dz)i-0 ought to be given beforchand. Whereas the values of
ai(z=0) are defined by the expressions given for ¥;(r, z=0), the values of the derivatives
(doy/dz)z-0) have to be evaluated in accordance with the physics of the problem. If

9}(2"-"—0)=lpj(z=0)=0 (2.14)
it is reasonable to assume that
(doy{dz) z-0) = 8,.5K;. 2.15)

3. Wavenumbers matched

Generally a wave oscillates sinusoidally with the propagation distance (Whitham 1974).
This kind of propagation is expressed by a factor exp (ikz —iw?), where the wavenumber
k is related to the frequency w through a dispersion relation. Accordingly, the complex-
valued amplitudes (¢, r, z) (where j=1, 2, 3) may be expressed as

st r, 2)="F{r, z) exp (iksz —iwyt). 3.1)

Note that ¥;(r, z) of the present section is exp ( —ik;z) times the W;(r, z) of the previous
section, Since Wy vary slowly with z as compared to exp (ik;z), the wkBJ approximation
(Shen 1975, Marburger 1975, Sodha ef a/ 1978) may be used to neglect 82¥,/az2 as
compared to 2ik;d¥;/2z. In the present section, it will be assumed that the modes are

spatially as well as temporally resonant. Thus they satisfy the wavenumber-matching
condition (Louisell 1962, Bloembergen 1968, Yariv 1975)

Sky=ky+ ko +kz=0. (3.2)

Then equations (2.3) reduce into the following (Louiseil 1962, Bloembergen 1968,
Yariv 1975) equations:

(1 9,0 +2ik; — 2 ¥ =M g* (3.3a)

r ar or 9z

(1 aa ; +2ike a) g = Mp\'s* ' * (3.3b)

(1 6,9 4 2ika —) Ve= MV ¥ Yo%, (3.3a)
r dr or .

The solutions of equations (3.3} are expressed in the form of equation (2.4), The
variational technique (Anderson and Bonnedal 1979) mentioned earlier leads to the
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following twelve coupled first-order ordinary differential equations for x;, #;, A; and ¢;
(where j=1, 2, 3):

dxs _ 2MxN? [()‘Zf‘i"?\_gh) oC+ (; (A2+q32)—()\2—{p2)) S] _ 2% (3.4)
y

dz kpye+ed? U A ks
do;__ 2MpxA® [,(ﬁ A2t 2y (A2 op?) (mf_ ) ]_2_‘\1 3
& i rgy | (5 O o= (eoen) o (T eS| 0 69
dﬁj_ . 2ij)tj3 [()124-@2__ ) ()t _ a9 ) ] _4}15::;()}
dz | IR 192t [N 4A) eC+ x()‘z‘HPZ) 2{A%—99)| § &y
(3.6)
dtpj__ 2ij)ljs [()\ o oy 3 2) _()\2+(P2_ ) ]
Eroe o] L e R A P A
2
+k; (A% —s%). 3.7

The symbols %, A, o, € and S are defined by equations (2.12)-(2.13).
Equations (3.4)~(3.7) may be obtained from equations (2.8)(2.11) by the following

substitutions:
(%’;f) ? k2 0k (%_zf.) 3.3)
)e)-s )
(52)-(2)-() -

where a stands for y, A and ¢. Equations (3.4)-(3.7) can be numerically solved (Scas-
borough 1966, Davis and Polonsky 1972) by using the Runge Kutta method followed
by the Adam mecthod, As boundary conditions, it is required to know the values of
aj(z=0) but not of (duyfdz)e-n.

4. Stimulated Raman scattering as an illustration

The phenomenon of stimulated Raman scattering in a fully ionised plasma (Forslund
et al 1975, Thompson and Simon 1076) means the convorsion of an electromagnetic wave
into another electromagnetic wave and a plasma wave. The ‘modal’ amplitudes involved
in this phenomenon are the electric fields £: and E3 of electromagnetic waves at fre-
quencies w; and ws respectively, and the component » of the electron concentration
oscillating at frequeney wa. The wavenumbers k1, k2 and k3 corresponding to these three
modes are given by

ki2={(w12—wy?) 2 (4.1a)
foy? = (ews? - wy?) o2 4.15)
k3?=(wa?— wy?) 52 4.1¢c)

where the plasma frequency wy and the sound speed s are defined by wp?=4#Net/m
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and $2= KgT/m, where N is the background electron concentration and T is the electron
temperature.

The process of stimulated Raman scattering in a plasma is significant only in the
region where the frequency-matching condition, equation (2.2), and the wavenumber-
matching condition, equation (3.2), are satisfied. The equations of motion and con-
tinuity combined with the Maxwell equations then lead to the following (Forslund ef af
1975, Thompson and Simon 1976) coupled partial differential equations for E;, Ez and n:

(1 8 o ik a) El_(27re wl) 2 Eg* (4.24)
or 3 mciwg
]
(1 9,38 ok, )Eg— 2me “"2) n*Ey* (4.25)
rar or ) medwy
1 @ a\ Ne®ks )
= Ky — — el ] B RER, 4.2
(r a’ 6r+2l "az) " (2m2w1w2 v @29
Equations (4.2) may be writfen as equations (3.3) under the following identifications:
(‘Fls T‘za ‘F3)=(8E1Jlrmwls eEEf!mw& n) (4' 3)
(M1, M, M3)=[2we%mc?, 2me?/mc?, Nks2[2s2). (4.4)
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Figure 1. Mode behaviour in the case of very wide beams: k;“f)\;_(o;-: 1019, For other
particulars, see the text.
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For the purpose of a numerical illustration, the following parameters have been

vunsidered ;

xim=10% cm st

e =4x 107 cm 5!

X3 = 1013 em-3

91(0) = 92 = 93{0] =0

Ay Az Asy

3 _W*F.,I{)*w for figure 1
1 2 3
Ay Ay Asy ]
Tt = Tt~ 1600 for figure 2
104%2105 %{i?:lo*l )| for figure 3
1 2
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Figure 2. Mode behaviour in the case of very narrow beams: ky2/ Ay ey =1600.
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P10} =P2(0) = P30) =0 (4.8
wp= —3.574x 102 g1 {4.94q)
wa=1.790x 1012 g1 (4.95b)
ws=1.784 x 101251 (4.9¢c)
N=1015 cm-3 (4.10a)
T'=38225K. (4.108)

The subscript (0} has been used to denote the value of the quantity at z—0.

~ Results of the numerical analysis have been presented in the form of graphs in
figures 1-4. Figure 1 corresponds to very wide beams, figure 2 to very narrow beams,
figure 3 to the pump mode wider than the other two modes, and figure 4 to the pump
mode much narrower than the other two modes.

First consider the figures 1-3. The j=2 mode is seen to act as the pump mode. [ts
axial amplitude y» and beamwidth parameter Az do not vary with the propagation
distance z; thus, the pump mode propagates like a trapped filament. The phase 6
decreases linearly with z. The phase gradient ¢ increases linearly with z, except in
figure 2 where it undergoes aperiodic oscillations,
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Figure 3. Mode behaviour in the case of the pump mode being wider than the other -
two modes: k22 A0y =108=104 k2 /s, 3 (0.
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Figure 4. Mode behaviour int the case of the pump ‘mode being much narrower than the
other two modes: k2?fAay=1600=1.6% 107 k% [A1, 2¢ny.

The axial amplitudes y;1 and ys of the other two modes vary periodically with z and
are seen to be unaffected by the transverse non-uniformity of the modes. Because of the
appasite signs of their wavenumbers (k1 and k=), the j=1 and j=3 modes behave differ-
ently. The axial amplitude x1 oscillates between yi and Syi), whereas ys oscillates
between ysm and ys3m/5. The phase #; increases, whereas #; decreases; the variations of
81 and P are more pronounced af the points of local minima of y; and ys respectively.

Focusing/defocusing of a mode is manifested by an increase/decrease in the beam-
width parameter A. The beamwidth parameter A; remains at or below Ay, whereas Az
remains at or above Agq). Thus the j=1 mode tends to get defocused, whereas the /=3
mode tends to get focused, At the local minima of x1 and y3z, the beamwidth parameters
A1 and As increase sharply, thereby implyving sudden focusing. After this sudden focusing,
the defocusing of the j=1 and j=3 modes is gradual, random and sudden in figures 1, 2
and 3 respectively. In this way, the nature of focusing/defocusing of the modes depends
very much on whether the modes are initially narrow or wide.

The variations of the phase gradients ¢ and ga are closely related to the variations
of the beamwidth parameters A; and As respectively. However, unlike the case of con-
ventional self-focusing, it is not possible here to derive an exact relationship between the
variations of the beamwidth parameters and phase gradients.
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Now consider figure 4. There is a remarkabile difference between the curves in figure 4
and the corrcsponding curves in figures 1-3. Now it is the =3 mode which propagates
strictly like a trapped filament. The axial amplitudes x; and xz and the beamwidth
parameters A; and As decrease with z. However, this decrease is insignificant and it is
rcasonable to say that even the j=1 and j=2 modes propagate like trapped filaments. In
this way, the sct of paramcters chosen for figure 4 corresponds te the soliton (Whitham
1974, Scoit et al 1973, Karpman 1975) solution of the problem. The reason for the
soliton solution appearing in this particular case is as follows. Since the j=2 mode
(whose axial intensity far exceeds that of the remaining two modes) is much narrower
than the remaining two modcs, its off-axial intensity is much lees than that of the remain-
ing two modes. Therefore, the j=2 mode can donate energy only in the paraxial region.
it has to pain energy from the remaining two modes in the off-axial region. As a con-
sequence of such a changeover of the role as the pump mode, there is a radial flow of
cnergy. For the particular case chosen for figure 4, the radial flow of energy happens to
nullify the effect of local energy exchange among the three modes.
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