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Abstract. This paper presents an investigation of the self-focusing of an
elliptically gaussian laser beam propagating along the static magnetic field in a
non-lingarly absourbing  magnetoplasina, The vcleciron  cuncencration  and
ternperature and the static magnetic field are allowed te be non-uniform. The
direct coupling as well as the indirect coupling between the right- and left-
handedly polarized modes has been taken into account, Coupled equations for
the beamwidth parameters have been derived by using the Akhmanov approach.
1t 15 seen that axial symmetry of the intensity cistnbutions of the two modes is
not preserved in the presence of the direct coupling. The variations of the beam-
width parameters become considerably aperiodic on account of the indirect
coupling and non-uniformity in the plasma parameters. Though the investiga-
tion is explicitly related to a magnetoplasma, the analysis presented herein can be
casily extended for some other anisotropic media.

1. Introduction

First hypothesized to explain an observation of anomalous laser scattering
[1, 2], the phenomenon of laser self-focusing [1-6] has now acquired a distinct
status in the realm of non-linear optics [6]. Laser self-focusing has now been
observed and investigated in almost all kinds of material media; recently it
has drawn the attention Of plasma PhyBiCiQtQ interested in the iDﬂOQpthiC
modulation [7] or heating of fusion plasmas [8] with laser beams. Except for
the derivation of the dielectric constant, theoretical analyses of the phenomenen
are common for all media: thus, theoretical investigations of the laser self-
focusing carried out by non-plaema physiciete are of equal interest to plasma
physicists and vice versa. It is to be further noted that several new concepts
and mathematical techniques have emerged in the course of theoretical treatments
of the phenomenon [3].

The analysis of laser self-focusing becomes particularly complicated when the
medium is anisotropic [1, 5] as can be realized, for example, when one considers
the presence of a static magnetic field in a plasma [9, 10]. In order to make
the problem of laser self-focusing in 2 magnetoplasma solvable, earlier investiga-
tions [11-16] made the following simplifying assumptions regarding the static
magnetic field: (i) the static magnetic field is directed without having any
toroidal component present; (ii) it is uniform ; (iii) the laser beam propagates
along or across the static magnetic field ; (iv) one of the two modes (right- and
left-handedly polarized modes in the case of propagation along the static magnetic
field or ordinary and extraordinary modes in the case of propagation across it)
is absent; (iv'} when both the modes are present, their direct coupling is
negligible. (We shall, for convenience, cali the coupling between the two
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modes direct if it arises on account of the presence of the static magnetic field
and indirect if it arises on account of the intensity dependence of the diclectric
tensor,)

In this paper, we have investigated the self-focusing of an elliptically gaussian
laser beam propagating along the static magnetic field in a non-linearly absorbing
plasma. ‘The electron concentratiun and Lemperatuie (sven in the absence of
the laser beam) and the static magnetic field are allowed to be non-uniform.
Both the right- and left-handedly polarized modes are allowed to be present ;
their direct coupling as well as indirect coupling has been taken into account.
In § 2, we have presented the expressions [or the diclectiic-tensor components
e, for the two modes when their intensity dependence arises on account of the
relativistic mass variation [17], ponderomotive force [18] or collisional heating
[19] of electrons. In §3, we have solved the wave equation for the electric
field in terms of the ‘ medified ' beamwidth paraineters which arc governed by
second-order coupled differential equations ; we have adopted a slightly modified
version [20] of the Akhmanov approach [1-6] which is based on the WKB and
paraxial approximations. In §4, we have presented numerical results along
with a discussion. The entire analysis (in § 2 aud §3) has been so presented
that it can be easily extended for some other anisotropic media.

We infer from the present investigation that the direct coupling between the
two modes destroys the axial symmetry of their intensity distributions as the
two modes propagate inside the plasrua,  Ou account of the indirect coupling
between the two modes and non-uniformity in the plasma parameters, the
criteria for focusing/defocusing of the two modes are altered and the variations
of the beamwidth parameters become considerably aperiodic.

2. Dielectric tensor

The nine components of the dielectric tensor € of a plasma magnetized along
the direction £ of propagation of the laser beam, at frequency w much greater
than the non-relativistic cyclotron frequency (eBy/myc) as well as the quiescent
electron collision frequency v,, are given by the following expressions [5, 20, 21].

€, =¢z=1-w,P—w,Q, (2.1)
€r =€, Fieg, =€, tie, =1—w, P—iv, 0, (2.2)
€= €y = €= €5y =0, (2.3)
where '
w, =4mNye? myn?, (2.4)
0ym0 sl (2.6)
wy=w,/(1F7) (2.6)
vy =0/(1Fy) (2.7)

—e is the electron charge, m, is the electron rest mass, N, is the electron con-
centration in the absence of the field, v, is the electron collision frequency in
the absence of the electromagnetic field,

y=eByfmytw (2.8)
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is the ratio of the non-relativistic cyclotron frequency to the laser frequency,
Roé iz the static magnetir‘_ fieh‘l,

P = Nmy/Nym | (2.9)

represents the electromagnetic field induced variation in the ratio Nfm of the
electron concentration to the electron mass,

Q = Nmyv[Nomvo=(N|NoP(myfm) (T[T, )*? {2.10)

represents the electromagnetic field induced variation in the product Nv/m of
N/m and the electron collision frequency v, T is the electron temperature, T is
the electron temperature in the absence of the electromagneric field,

b=2 or 1 (2.11)
depending upon whether the electron collisions are with ions or neutrals,
d=1-s/2, (2.12)
and
s==3 or 1 or 2 (2.13)

depending upon whether the clectron collisions are with ions or non-diatomic
molecules or diatomic molecules [21].
It is convenient to use the dimensionless intensity [20]

I=1,+1I, (2.14)

Ii=‘8F1Ei*.Ei, (2.15)

where the normalization constants SI'y depend on the mechanism of non-
linearity under consideration, I'y are such that I'y =1 in the absence of the

static magnetic field, and
E,=E_ tiE, (2.16)

are the electric fields [5] corresponding to the right (—) and left { + ) handedly
polarized modes. Then it ean he shown that

B=e*m® c? w? (2.17 a)
T, =(tFy)y (2.18 a)
P=(1+1I)10 (2.19 a)
O=(1+1)7" (2.20 a)
in the case of relativistic mass variation mechanism [17];
B — efdom ko Tow?, (2.17 &)
Ly =(1-y2)(1 Fy)% (2.18 h)
P=exp (1), (2.19 b}
Q—exp (—bI), (2.20 B)
in the case of ponderomotive force mechanism [18} ; and
B=Me*/6m,® ky Ty, (2.17 ¢)
Py —QF)™ (2.18 ¢)
P=(1+ 1y, (2.19 ¢)

O =(1+ Dper-1(1 + 21", (2.20 ¢)
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in the case of collisional heating mechanism [19]. Here M is the ionfneutral
rest mass and &g is the Boltzmann constane,  To should be mentioned here
that the relativistic variation of the cyclotron frequency (eB,/mc) and the presence
of longitudinal electric field E, have been ignored in writing equations (2.2) and
(2.14) respectively.

We shall assurue that iu the paraxial region, w, v, y and ', vary radially
only in powers of X% and 5?;

X=xfry, and n=y/r, (2.21)

are the transverse cartesian coordinates normalized by an arbitrary lenpth #,.
We shall express the dimensional intensities of the two modes as

E* Ey=E 2exp[hip— ;hiLr¢L]’ (2.22)
where
=X a9 or Xy (2.23)

depending upon whether L=1, 2 or 3. We may then expand the dielectric
tcnsor componcnts c 4, in the paraasial 1egivn, as fullows [20].

€4 =(€sgr— €)= g (€sreticspi)by, (2.24)
where

€ip=1—w, P, {2.25)
€101 =V1alos (2.26)
Crpr—wiiFo | Wi R(—dP(d 1), (2.27)
€10 =01 Qu+ 4, R(—dQo/d1,); (2.28)
Wig=wi(X¥=7=0), (2.29)
Ve =0 (X=n=0), (2.30)
Wiz, = (001 /8L )(y=y=0n (2.31)
Ve =(0VL/0PL) (4= y=o) . (2.32)
P,=P(X=9=0)=P(I=1), (2.33)
Q.=0(X=n=0)=0(I=L). (2.34)

R=—(0I[0¢1)(y= y=o)
={{h,z,— 2 In (BTL)/OBL1T, +[h_p,— 2 In (BT_)/0¢L) 1} m ymo  (2-35)
I,=I{(X=9=0) -

The presence of w,; in equation (2.27), v, ; in equation (2.28) and 2 In (81',)/
d¢y 1n equation (2.35) makes the present analysis applicable even when the
clectron voncenustion and winperature (in the absence of the laser beam) and
the static magnetic field are radially non-uniform [9]. In writing equations
(2.22) and (2.24), we have assumed that the derivatives ok, [0X, 0k, [oy, dw,/8X,
Owy [On, Bv, [OX, dvy fon, 88T L[0X, 281", /Oy are negligibly small, if at all present.
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3. Beam propagation

When %,%|e| » | V¥ e|, the clectric fields corresponding to the right (—) and
left (+) handedly polarized modes are governed by the scalar wave equations
[14-16]

i LY ege | Eamquoon (220 2 Es
a§2+qgi ax? 87?2 g€y £ =4 or) X 31} T, (3.1)

where we have used the notations

&= zlhors, (3.2)
g=Fky? 1y, (3.3)
oy >1/2+ €, /21 —w, P,), (3.4)
ky=w/e. (3.5)

Note that the two modes are coupled directly on account of the presence of the
right-hand-side term in equation (3.1} and indirectly on account of the intensity
dependence of the diclectric tensor components ¢;. Earlier investigations
[11-16] have neglected the direct coupling, and hence they are applicable only
when y~0 or £~0. In the present investigation, we shall retain the direct-
coupling term as far as possible.
As a boundary condation, we take the electric ficld of the laser beam at £=0(
to be given by
E(§=0)=E.q cxp [fest — hs1,4X°)2 — hygym®(2]. (3.6)

Without Inss nf generality, we may consider the transverse electric field E {# —
§=0) at t=£¢=0 to be aleng the x-axis so that E,, are real. If the beam
diverges/converges very slowly, then we may express the solution of equation
(3.1) in the paraxial region in the form [14-16, 20]

Ey=Esqexp iwt—1g [ ky dS+ (g1, +1g14)/2
- ;(hﬂ.r"'fkiu)‘h/z], (3.7)

where
hi = gy (3.8)

and g, and k,; vary with £ but not with X or 5. We have assumed |e, | <
[€14e] In writing the above expression for k. Substituting for E, from the
expression (3.7) into eqnatinn {(3.1), and then eqnating the real and imaginm’y
coefficients of ¢, ,° and ¢, on both sides of the resulting equation, we obtain
16 second-order coupled differential equations for g.., g.;, hiy, and Ay,
(By allowing ¢, to be ¢, =X and ¢., = and thercby increasing the number of
coupled differential equations from 16 to 24, we can justify our assumption
that by, Big, Pig and Jiig; are negligibly small.) In the WKB approxima-
tion, we neglect the second-order terms in these 16 equations and obtain

B, dgyy

dt —Tx ;T }"Ilr_g‘IﬂtIr:O’

(3.9)

k dgtr

dk
iTg'+at;hili+d_g+geiaI=0’ {3.10)
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dh |
ky d?i_"t(kmﬁ—hi:f)"'?fim:(}:
dh

ks 7zlt+zaikilrh:th'_qfiﬂ=0’

dh | ., . .
ky dz —0y %,kilrh13r+ai 2:‘ hyphig;+qerap="0,

dh_tar

ky d¢ +oy ;kt:rh¢3i+ﬂi ;hiuhi—ar—fﬁia::o:

where I=1 and 2, and

€:qar=[Re Eid](x= g=0h

frar=>%rar+[IM e a] yo0n

expr=¢+r,+[(6/0¢L) Re €x4](y= y=0n

expr=€sp;H[(8/04L) Im €gqliy=y=on

€xq=Ext g1 — 03 )(8/@X £ i0/n)* Ex.
Equations (3.12) and (3.14) lead to
hih:=(q€:t!I_kidhilr/df)fzcikilr!
hygi=(gessr— ks dhigldé—o, ;hi.‘iki:ir)/ai ;hih"

(3.11)
(3.12)
(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

(3.18)
(3.19)

(3.20)
(3.21)

Substituting for %, ;; and A, from the expressions (3.20} and (3.21) into equa-

tions (3.11) and (3.13), we then obtain
d2h:tlr_ 3 (dhilr 2+(i dky +2'g€iif)dh:tir
dg? Zhilr d¢ ks dé  hiyky d¢

" I:ZC"+2 h+!rs_20+qk:klreill‘?.__ Feyt g dftu] 0,

ky? ky? 2hy ki Ry dE
P hiy (i dky 20, T hey ¥ dhi.,,./dg-‘) dh s,
dé* ky dé ky Y ey d§

20,2
+ |: k T X e+ hah et hanhisi)has
+

k.2 (Z ‘tm}’zar“‘z }’tw‘:an"z hiyeiar)
FS

+_9; Zdhilr/dge _dfisr
Re \ Xhey 0 dE

-2 Z dhsildE 2 h: lihiar] =0.

ky Yl
Using equations (3.10) and (3.20), we obtain
Zer=10 (v (Brr 0, )[R (VP21 P2 m) R ) y= y=0)]

£
= .0[ E(eﬂ:a1+fll/2hilr)ki_1 dt.

(3.22)

(3.23)

(3.24)
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Consequently, we obtain the following expressions for the axial intensities.

Tra= Lo (v (hirhsar) R (W (herhtan)Re Y gm y=0)]

H
X exp ["‘ .! Ylerartesnf2he )kt df]; (3.25)
where the initial axial intensities I, are

I10=(Bl'1) (= y=e=0rE 1% (3.26)

Thus, using the expression (3.25) in evaluating e, ; and de, ,/d¢, we can solve
equations (3.22) and (3.23) for h.;,. In general, they cannot be solved ana-
lytically and have to be solved numerically ; the Runge-Kutta method [22]
is most suitable for the purpose. In the existing literature [11-16), A, ,, 12 =f, .
and £, ' =f, are known as the beamwidth parameters (if . ,,=1). How=
ever, it will be more convenient here to call A, ;, as the beamwidth parameters,
'T'he boundary conditions, corresponding to plane wavefronts for both the modes,
are

hip(é=0)=hy (3.27)
hya(§=0)=0, (3.28)
(dhyp,/dE)e-0y="0. (3.29)

Effecte of plasmn inhomogencity 23] and lascr absorption [20] on lascr
self-focusing have already been investigated in detail in our previous papers.
In this paper, we shall not consider these effects ; hence, we omit the terms
containing dk, /d¢, €, .7 and e, 1y in equations (3.22), (3.23) and (3.25). (Note
that 4k, /df doee not vanish even in an axially homeogencous plasma if the laser
beam modifies the plasma-concentration ; however, the electromagnetic field
induced dk,/df is generally negligible when w, <1). In equation (3.23), the
most important term besides d? .y, /d€% is 0.9 Y hiyerapfks?; the other
terms being quite small shall be neglected in order to simplify thc analysis.
Consequently, we obtain

dzhih‘_ 3 (dhiir)2+[20'tzkilra_-zgiqk:tlrﬁiiﬁ']=0 (3.30)

&t 2h., \ df k.2 k.2
a2 h o
dfzsr_“ki_Z(hﬂr‘Fkizr)Eim:O: (3.31)
T S O N/ e ey LN (3.32)

In the absence of a static magnetic field [20, 24], the right- and left-handedly
polarized modes are not separate and we have

A2h, 3 [dR\2 2h,
P (Tg) +5 (h—gei) =0, (3.33)
Dy =0 (3.34)

According to equation (3.33), when wew(X—y—£-0) and kpg—1, a lascr
beam diverges monotonically if I, <1/gw, gets self-trapped if I,=17, o OF
I wpp Where I 1. op are solutions of the equation (—R dP,fd1 ) =1.0=
l/qw, starts diverging but then oscillates periodically if 1/gw < I, <1, 1., or
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Io> T4 upps a0d starts converging but then oscillates periodically if Ty 1o < Ip <
Lyt wpp- :
In the presence of a static magnetic field, A, 7, are all different and Ay, #0
on account of the direct coupling between the two modes. Consequently, the
axial symmetry of the initial intensity distributions of the two modes is lost as
the twoe modes propagate inside the plasma. Qsill, hawever, it is possible to

have hy = hy 4o and hyg=0 (ie. self-trapping of both the modes) provided
orofts 0" =461 vo- : (3.35)

"t'his modificd condition (for self-trapping) is more stringent than the condition
1,=1I,, mentioned above in the case of absence of a static magnetic field. In-
direct coupling arising on account of the intensity dependence of €, leads to
cross-focusing [16] and apcriodic oscillations of the two modes. Faraday
rotation and ellipticity [16] can be casily evaluated once we have evaluated kg 44,
and hence we shall not discuss them further in the present investigation.

4, Resulis and discussiun
Figure 1 shows the variations of

Ef‘itfﬂthisrogqutw(fa=fst) (4-1)
L=l ,+1, (4.2)

corresponding to the relativistic mass variation mechanism [17}, ponderomotive

versus

Figure 1. Variations of ¢ with I corresponding to (a) relativistic mass variation mecha-
nism, () ponderomotive force mechanism, (¢) collisional heating mechanism and
(d) absence of non-linearity.
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force mechanism [18], collisional heating mechanism [19] and absence of non-
lincarity [20] (i.c. ey pg= o) for the curves labelled a, b, ¢ and D respectively.
If the values of I and {o4 A4 o%/gee) lie below the curve D, then the + modes
diverge monotonically so that &, , </, . If they lie on the curve a (or b or ¢
as the case may be), then the + modes get self-trapped so that A, .=k, 4
If they lic in between the curves a (or b or ¢) and D, then the | modes start
diverging but then oscillate {not necessarily periodically) so that dh ,/df <0
at £=0. If they lie above the curvé a (or b or ¢}, then the + modes start con-
verging but then oscillate so that dhy,/dé>0 at £§=0. Aperodicity in the
oacillations of %4, ariscs because of the indireet coupling between the two modces
as represented by equation (4.2). )

1.0

log khi'ir|

by T
regative for

detted curve

1.0 1.5
E

Figure 2. Variations of iz with € corresponding to y=04, ¢=400, w=02, hur=1,
and fy,=107% (In figures 2-8, the ponderomotive force mechamsm has been
considered.}

We have solved equations (3.30) and (3.31) by the Runge-Kutta method
[22], for the ponderomotive force mechanism and have presented the results in
figures 2-8. Results corresponding to the relativistic mass variation and col-
lisional heating mechanisms are qualitatively not much different and have,
therefore, not been presented here,

FFigures 24 correspond to y=04, ¢=400, =02, hy =1, and ;=103
for figure 2, (+1 for figure 3, 10 for figure 4. Notc that generally, but not
necessarily, #,4,~ —h_5.. Though the values of kh,; are very small as com-
pared to %, they can be of interest in certain cases. Corresponding to non-
vanishing /., we have different values for 4,,. The differences between
h., are most significant when the beam converges. Also note that

|hilr_h+2rl‘: |h—1r_h—2r|(|h41r_h—1r[' (43)
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.0
I}
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o
2 3.0+
-
f.j
ﬂr‘r
—5.0L_[ 1 i
0.0 0. 0.2 0.3
%
Figure 3. As figure 2, except that J.s=0-1.
14
. 0.6}
_CH +1
-
0.1k
-3 =]
= +3
m
=
3 ~8.0r
-13.0 ] ]
o0 1.0 2.0 3-0
g

Figure 4, As figure 2, except that T ,=10.
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2.5

+lb

2.0k

1.5

t.0F

log th.*lr,'/ h,|m|

0.0

ag

Figure 5. Variations of ki with § corresponding to y=0-4, g=400, w=0-2, h110=0-75,
hiero=(a) 1-5, (B) 0-75, (e) 1-5, h.1r0={(a) 0-75, (3) 1-5, {c) 1.5, F_sro=(a) 1.5, (&) 1-5,
(e} 0-75, and I.3=0-3/+/8. (In figures 5-8, the direct coupling between the =+
modes has been neglected.}

2.5 -

)L ={a)1
(bh3o
felin

P |y

45 ] i

0.0 1.0 2.0 3-0

Ak

Figure 6. Variations of kusr with £ corresponding to y=0-4, g=400, w=0-2, hyre=1,
and I,,={(a) 1075, {5) 0-1, () 10, I_,=(a) 10, (1} 1, (c} O-1.
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e} 1.0

00 02 0.4 0.8
Ag

Figure 7, Variations of huir with £ corresponding to y=0-4+0:5x*+0-59%, g=400,
To=(a) Ty (B) Top, (€) Topl1 +0-5x2+0592), ew={(a) 0-2, (8) 02, {¢) 0-2+0-5x*+
0'5'1'}21 [ a—— 1, and Iinz(a) 0‘1, (b) 10, {a‘.‘) 1.

A=laklg
{bit1.g
(e]0.5

bg by

0.8

Py

0.6 ! L
0.9 : o1 0.2 0.3

AL

Figure 8. Variations of A with ¢ corresponding to y=0-4402x*+0:85% =400,
To=(a) Toa, ) Tyy, (¢} Tooll +0-332+0-79%), w={a) 0-2, () 0-2, (c) -2+ 07>+
0342, hagm=1, and Te=10(a) 0-1, (5) 10, () 1.
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In figures 5-8, we have neglected the direct coupling between the two modes
80 that f,,,=0,

Figure 5 corresponds to y=04, ¢=400, w=0-2, k ,,,=075, h 4,=1'5 for
(a) and (c), 0-75 for (b), h_,,,=0-75 for (a), 1-5 for (b) and (¢), A_p,,=1'5 for
(a) and (b), 0-75 for (¢), and 1,,=0-3/1/8. The curves show that the effect of
any change in the inital beamwidih is quite appreciable. When one mode is
focused, the other one can be defocused if the initial beamwidths for the two
modes are different. Similarly, when a mode 1s focused along the X-axis, it
can be defocused along the Y-axis if the initial beamwidths along the two axes
are different.  Such a dilference in behuaviour can influence the process of
Faraday rotation [16] very appreciably.

Figure 6 corresponds to y=0-4, g=400, w=02, b, =1, and I _,=10"5
for (a), 0-1 for (b), 10 for (c), {_,=10 for (a), 1 for (b), -1 for (c¢). The extent
of influence of indirect coupling oun focusing/defvcusing of the twou modes is
quite apparent from the graphs. Though I ,<[I , for {a), the + mode is
focused much more than the — mode. This is because of the fact that .
has (1--y) in the denominator, whereas w_ has (1+v).

Figures 7 and 8 correspond to y=04+05x"+ 059 [ur ligure 7, 04+
0-2Xx% + 0-8%2 for figure 8, g=400, T,=T, for (a) and (b), T34(1 +0-5X%+0-5%?)
for 7 (¢), Too{1+0-3X2+0-752) for 8 {c), w=02 for (a) and (b), 0-2+0-5X*+
0-5%% for 7 (c), 0-2+4 0:7X2+0-35% for 8 (¢), Az py=1, and 1,,=0-1 for (a}, 10 for
(b}, 1 for {c). It is scen that non-uniformities [9] in the elecuun cuncentradon
and temperature and in the static magnetic field can change the behaviour of
the two modes not only quantitatively but also qualitatively. Aperiodicity in
the oscillations of the beamwidth parameters is considerably enhanced on account
of non-uniformities. The effect of radial non-uniformities is st apparent in
the case of 7,,=10 which roughly corresponds to f,> 1 ... Such an effect
of radial non-uniformities in the plasma parameters can be easily understood
in terms of the external focusing which has been extensively investigated in the
context of optical fibres [257.

In the foregoing analysis, we have presented the parameters in their
normalized {dimensionless) form. This presentation has an advantage over
the presentation in their absolute {dimensional) form. As can be seen from
figure 1 or from the analysis in § 3, identical end resulis way be obtained [ur
several combinations of values of the absoclute parameters. However, all
possible combinations of values of the absolute parameters giving identical end
results may be incorporated in a single combination of values of the normalized
parametcrs.

While correlating our theory with an experiment, it is necessary to convert
the presented normalized parameters into the required absolute parameters.
This conversion can be easily carried out whenever necessary. As an illustra-
tion, however, let us find out a typical set of values ol (he ubsolule puameters
which corresponds to the following set of normalized parameters chosen for
figure 8 (¢}: y=04+02X2+ 0892 ¢=400, T,=Ty(1+03x24+0792), w=
0-2407x24 0392 k, po=1,and T4,=1. Letustakew=104/s, and Ty, =105K.

We then obtain :
ro=initial beamwidth along X or ¥ axis=+/{g)cfw="56x 10—° cm,
E | =4mokp Togw? (1 — )2 I o/(1 — yyf2)e? =101 érg/cm:’,
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E_2=4mphg Toew™ (1 + yy)% I_o/(1 — yy/2)e2 =55 x 107? ergfem?,
By = ymycwfe =225 % 1091 + x%/1-8 x 10~ cm? + y2/0-45 x 10~ em?) G,
Ny=wmyw?4mre? = 6-2 x 1071 + x2/1-03 x 10-° cm?
+4%2:4 %10 % em?) em~3,
To=10%1 +x%/1-2 x 10~ cm? + »2/0-51 x 16— cm?®) K,

Note that these values for the absolute parameters are realizable in an experi-
mental set-up. Figure 8 (¢) implics that the minimum distance at which a
beamwidth parameter becomes minimum is &)= 0-2(wr?/c)=2-4x 1072 cm.
Both r, and =z, are much larger than the wavelength ¢jw=3x10"*cm. In
essence, therefore, the WKB approximation employed in the present investiga-
tion is justified.
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Cet article présente une étudc de 1’autofocalisation d'un faisceau laser elliptiquement
gaussien traversant le champ magnétique statique d’un plastma magnétique 4 absorption
non linéaire. On admet que la concentration d’électrons, la température et le champ
magnétique statique sont non uniformes, Le couplage direct ainsi que le couplage indirect
entre les modes de polarisation gauche et droit ont é1é pris en compte. Les couples
d’équations pour les paramétres de divergence ont été établis en utilisant la méthede de
Akhmanov. On voit que la symétrie axiale des répartitions d’intensité des deux modes
n'est pas conservée en présence du couplage direct. Les variations des paramétres de
divergence devient considérablement apériodiques si P'on tient compte du couplage indirect
et de la non uniformité dans les paramétres de plasma.  Bien que I'étude soit speaifiquement
relative & un plasma magnétique, I'analyse présentée ici peut &tre aisément étendue & tout
autre milieu anisotrope.
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