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Self-focusing of a laser pulse in a transient plasma
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Following Akhmanov’s approach, self-focusing of a laser pulse 1) a transient
plasma has been studied. The beamwidth parameter and hence the laser in-
tensity and the frequency shift (time derivative of the phase) have been evaluated
an o function of time and the distance of propagation. It is seen that the time
dependence of the axial intensity changes appreciably as the pulse propagates.
The present investigation is restricted to a pulse whose incident intensity has
Gaussian radial dependence.

1. Introduction

The phenomenon of self-focusing of laser beams in plasmas (Sodha et al. 1974,
1678 a) and in other nonlinear media {(Akhmanov ef al. 1872; S8hen 1975; Svelto
1974) has been a subject of intense investigations in recent times. The pheno-
menon is quite gignificant and is relevant to important problems like laser-driven
fusion (Brueckner & Jorna 1974). It influences other nonlinear phenomena like
soliton formation {Patecl 1977) and parametric instabilitics (Patel 1977, per-
sonal communication; Sodha ef al. 1977) which frequently occur in plasmas.
Consideration of the transient nature of the laser beam and the medium leads to
interesting results. Thus Lugovoi & Prokhorov (1974) interpreted the filamentary
propugation of a luser pulse as the longitudinal motion of the intensity maxima.
Using a rather phenomenological and numerical approach, Feit & Fleck (1976)
have studied the variation of the axial intensity of a laser pulse in a steady-state
plasma with time and the distance of propagation along the axis. Following
Athmanov el al. (1972}, Sodha ¢f al. (1976b) have studied the variation of the
intensity of a laser pulse in a transient plasma with time and the distance of
propagation and thus interpreted some of the resuits of the experiments cartied
out by Eremin ef al. (1972). '

In the present investigation, following Akhmanov e¢f al. (1972), we have
investigated the distortion of a laser pulse in a transient plasma. In §2, the
expression for the dielectric constant (Ginzburg 1970) has been presented. In
§3 the wave equation for a plane polarized electric field has been solved in the
WKB and paraxial approximations and using the concept of beamwidth para-
meter (Akhmanov ef al. 1972; Sodha ef al. 19764). In §4, numerical results

along with a discussion have been presented.
Tt ir eonvenient. to usa tha dimensionless intensity

I = §E*.E, (1.1)
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where £ is a mechanism-dependent constant to be defined later. It is well known
(Sodha & Tripathi 1977 ¢, b} that when the incident axial intensity

Iy =Iyp,i0 (1.2)

eqnals the lower or upper self-trapping intensity, I, or I; ,, alaser beam can be
gelf-trapped in a steady-state {and homogeneous non-absorptive)} plasma; for

L1 < Iy < Iy, the axial intensity

Ia = I(rmo,z) (13)
varies periodically betweon J, and a maximum valus; for I, = Iy, I, varies
periodically between I, and a minimum value; and for I, < I, I, decreases
with the distance of propagation. We have, however, shown here and in
concurrent investigations (Sodha, Patel & Kaushik; Tewari & Patheja,
persenal communications) that for Ip < I < Iy, I, varles periodically
between I, and a minimum value; I is the self-trapping intensity predicted
by the self-foeusing theory based on the approximation (Sodha ef al. 1874}

€~ erugy+ I8/ g g {1.4)

The present investigation is seen partially to support Lugovoi & Prokhorov’s
(1974) interpretation. The variations of the frequency shift and the axial intensity
are uncorrelated, and the time dependence of the axial intensity changes
appreciably as the laser pulse propagates. Thus a laser pulse with Gaussian time
dependence of I, displays inereasing non-Gaussian time dependence of I,

2, Dielectric constant
For a quasi-monochromatic electric field expressed by

E(r,z,1) = &(r,z,{)exp {twi), (2.1)

the displacement vector in a plasma free from any non-local effects is given by
(Sodha et al, 1974)
Dir, 2 8 = [&lm, v, 2, 1) E{r, = £)
—i{0e(w, 1, 2,1) [ 0w) (06 (r, 2,t) /)] exD (itt). (2.2}
When the electromagnetic field frequeney e is much greater than the collision

fraqnanny v and the relaxation affacts are nagligible, the dialectrie constant of

a plasma is given by (Ginzburg 1970; Sodha et al. 19764a)
€= 1—wP, 2.3
where w = 47N, e fmw?, (2.4)

N, is the electron concentration in the absence of the field, m is the electron rest
mags and P represents the field-induced variation in the electron concentration
(or mass). The ponderomotive force mechanism (Kaw et al. 1973; Sodha ef al.

19764) leads to P =exp(-1) (2.5)
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with the mechanism-dependent normalization constant
B=I/E* E = e?/amks T, 08, (2.6)

where T}, is the electron temperature in the absence of the field.
We shall assume the intensity I to have Gaunssian radial dependence:

I=Lexp(—r/rif? (2.7)
‘at leagt’ in the paraxial region defined by
r £ rf. {2.8)

Here f{z) is the beamwidth parameter to be defined later. Using (2.3), (2.5) and
(2.7} in the paraxial region, we got

€~ €, — 6,18 [r3f3, (2.9)

where ¢, = 1—wh, (2.10)
&, = wh, (2.11)

P=IPFP =ILexp(—1) (2.12)

3. Pulse propagation
When k%¢ » [V2¢|, a plane-polarized electric field E in a cylindrically sym-
metric plasma is governed by the sealar wave equation (Sodha ef al. 1974)
FE 10 08 180D

ZErn a am (3.1)

For a slightly diverging/converging beam, in the WKB approximation, we may

write 2
E = Afey,_p/e.toxp (iwt~z‘ f kdz—iS), (3.2)

0
where b=k, =etw/, (3.3)
€ = 6+ 2w BwP) /0t + w B (wh) fer®, (3.4)

Wae shall neglect the term 2iw—18(wP)/ot in (3.4), so that k is real. Earlier in-
vestigations (Feit & Fleck 1976; Sodha ef al. 19765) have ignored the term
w2 3P/ 5 ag well as 2101 8(wF) /2L,

Substituting (2.2), {2.9) and {3.2) into (3.1) and then separating the real and
imaginary parts, it is seen that the real amplitude 4, and eikonal § satisfy the

coupled equations 84, 1 & a8 18884,

- Tt = 35
% Bpop" o & op op 35
a8 1 & 94, 1t [88\® gqE.p?
Z o5l toalE) e (3.6)
0E 2A,eiplp Op 2ei\Dp/ 2elfr .

We have here replaced the old variables 7, z, { by the new dimensionless variables

p=rfry (8.7)
£ =z/kyri, (3.8)

= wt*J“Kdz, (3.9)
1}
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where K = ky[efe, )} d(wed)/ow {3.10a)
= by dwley(, = I)]h) /0w, (3.100)
and, moreover, we have used the notation
g=R (3.11)
The use of the approximate expression (3.10b) instead of the actual expression
(3.10a) makes 7 independent of r and 2 and thereby simplifies the analysis.

The incident intensity will be assumed to be radially Gaussian with mean
beamwidth radius r,, i.e.

I(p,£ = 0,7) = L(r)exp(—p¥), (8.12)
Lir) = FEY(r), (3.13)
A€ = 0,7) = Eyf7)exp(—p?/2). (3.14)

Following Akhmanov ef al. (1972) and Sodha et al. (1976a), we then obtain, in
the paraxial region,

Hp,£,7) = L(E, 1) exp (- pt/f2E, 7)), (3.15)
L{E7) = BEYT)FHE T) [G,(E = 0,7) /6,6, 1), (3.16)
Aolp, £,7) = By(1)f~E,7) exp (—p2/2fHE, 7)), (3.17)
S(p, £,7) = S8, 1)+ 2712k (£, 7) e{In f (€, 7)) /€. (3.18)

Substituting (3.17) and (3.18) into (3.6) and then equating the coefficients of p°
and p?et/2f with zero. we obtain the following equations for the axial eikonal
3,(§, 7) and the beamwidth parameter f(£, 7).

%g_é%, (3.19)
The boundary conditions are

S, f=10,1)=0, (3.21)

JE=0,7)=1, (3.22)

(o /P g, = 0. (3.23)

We shall assume the plasma to be homogeneous in the absence of the field and

(rKdz) to be negligibly small so that w may depend only on 7, i.e. w = w(r).
0

Integrating (3.19) and (25, 8f /9£) times (3.20), we obtain

&=~f€ﬁ4%, (3.24)
L]

i
af ot =52 | 1-f-2-gu [ Bipape] (3.25)



Self-focusing of laser pulse 305

Integrating (8.20) numerically by the Runge-Kutta method (Scarborough 1966)
or integrating (3.25) analytically when possible, we can find the beamwidth
parameter f(g, 7).

In order to study the behaviour of f qualitatively, let us neglect the dispersion
effects. Then (3.20) implies (Sodha & Tripathi 19774, b) that f(£,7) = 1, i.e. the
portion of the laser pulse at time r is self-trapped {in a homogeneous non-
absorptive plasma) provided Ij{r) = I;(r) such that

qu = [Fy(I, = L)I™ = exp L)/ Ly (3.26)

For gw < (gw),, = ¢, there i8 no I, to satisfy (3.26); for qw = ¢, I = (L), = 1;
and for qw > ¢, (3.26) has two roots I, and I, which decrease and increase
respectively as qw increases. For I, < I, < Ly, qwPy(I, = L) > 1 and f starts
decreasing; whereas either for I, < I, or for I, » Ly, qwF{Il, = I} < 1 and f
gtarts increasing. For I, < I, (gwF,f8) < 1 for all f and hence f keeps increaging
with £; whereas for I, > I, qwP,f? can cross the value unity as f changes and
hence f oscillates periodically between 1 and fo,(=/fiax OF frui) With a period of
2¢. . Neglecting the effect of the term (21n 2/8Z) (5f /2£) present in (3.20), we get

Iy, = {qw)™, (3.27)
and approximating I, as (1,/f?), we get
quiexp (—Lfxt) —exp(~ L) +fod~1=0. (3.28)
For values of I such that (2% /6§%) ~ O when f = (1 +f.,)/2, we get
fex = Z[Io/ln (qun)]&_ L (3-28)
The frequency shift (Sodha ef al. 1974, 19764} normalized by the froquency
, Is defined s Alp,£,7) = —88(p, &, 7). (3.29)
It is convenient to express A as
ol ow ol Jw
8 = (B 2+ Buu ) = (B, 2+ B %) (3.30)
where, using (3.18) and (3.29), we have
Ay, = —d8,/d1, (3.31)
A, =—d8,/dw, _ (8.32)
Bor, = d{2-1e5 o(Inf)/2E) /Ly, (3.33)
Ay, = (271 ek (I f)/2E] /duw. (3.34)

The knowledge of the dependence of the A coefficients A,z , A,y Agz, and Ay,
on (p, £, I, w) and the dependence of , and w on 7, simplifies the study of the
dependence of the A coefficients on (p,§,7). Since the dispersion effects are
generally negligible, the Acoefficients do not depend explicitly on 7.
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qoF

F1qurE 1. gw versus I, for I, = (A) I, (B} L.

4. Discussion

Figure 1 illustrates how the dimensionless parameter quw ( = 47N, e%r3 /me?) and
the dimensionless incident axial intensity I, should be chosen so that a laser beam
ean be self-trapped (in & homogeneous non-absorptive plasma): (A) according
to the self-focusing theory based on the approximation (1.4} and (B) according
to the self-focusing theory based on the ponderomotive force mechanism with the
correct I dependence of ¢. In other words, the curve A is for gw = 1/I; versus I,
whereas the curve B is for gw = exp (I;)/; versus L,. For values of quw and I,
lying below or on the curve A, the beam diverges monotonically (Sodha ef al.
1974}, i.e. f 2 1. For values of gw and I lying in between the curves A and B,
the axial intensity I, oscillates (Sodha, Patel & Kaushik, personal communication)
between the incident axial intensity I, and a minimum value L. i.e.

Joax 2 f2 1.

For values of qw and I, lying on the curve B, the beam becomes self-trapped
(Sudhw & Tripathi (977a, 8), 1.e. f = 1. For values of quw and I, lying above the

curve B, the axial intensity I, oscillates (Sodha & Tripathi 19774, b; Sodha,
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FiGcure 2. f,, versus I, for ¢ = 100 and w = 0:04 as
obtained (4) analytically, (N) nwmerically.

Patel & Kaushik; Tewari & Patheja, personal communications) between the
incident axial intensity Z; and a maximum value I, i.6. foin < f < 1.
Figures 2-8 correspond to ¢ = 100 and w = 0-04.
Figure 2 illustrates the variation of £ (=f... or £.,..) with I as obtained (4)
analytically according to (3.28) and (¥) from solving (3.20) numerically by the
Runge-Kutta method (Scarborough 1966). This figure does indicate that

Smax(F0) 2 f2 1 for I; < Iy < L;,. Because of the approximations used in
arriving at (3.28), the analytical results do not coincido with theo actual numerical
ones; however, the agreement between the two is tolerable,

Figure 3 represents the variation of §., (the dimensionless distance at which
the axial intensity becomes minimum /maximum, i.e. f becomes f,,) with I, as
obtained numerically. The slope ol the vurve is large fur I, < I < I, but small
for I, > I;,. The non-zero slope of the curve for I,; < I, < I, implies, in the
case of a laser pulse, the longitudinal motion of the foci where the instantaneous
axial intensity becomes maximum. Lugovoi & Prokharov (1974) had interpreted
the filamentary tracks observed along the propagation of a laser pulse in terms of
guch a longitudinal motion of foci. Such an interpretation would require

20-2
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Frovre 7. I, versus 1/7, for I, = 1Sexp (—7/7h). ¢ = 100,
w=004andat E=(0)0, (1) 1, (2} 2, (4 &

(I fpsn/dL,) € (dInE../dL,) for L., < I, < L, whereas figures 2 and 3 show
that (¢ Inf,,,, /dI,}is generally much greater than (dIn£,, /L) for Ly, < I, < Ly,
Hence the present investigation supports Lugovoi & Prokhorov’s {1974) inter-
pretation only partially.

Figure 4 illustrates the variation of f with £ for I, = (1) 0-1. (2} 0-34. (3) 1-0,
(4) 3-4 which correspond to (1) Ly < Ip, (2) I < I < Iyy1, (3) Ly < Iy < Iy,
(4} I, > L;,. The figure confirms the foregoing qualitative discussion on the
behaviour of f. The effect of temporal dispersion {Sodha ef al. 1974} characterized
by the torm [w—282(2P)/512] in (3.4) is quite negligible and hence, in fignra 4,
the curve for a given value of I, does not explicitly depend upon 7.

Figure 5 represents the variation of the axial A coefficients A,;, and A, with
£for I, = (1) 0-1, (2) 0-34, (3) 1-0, (4) 3-4; figure 6 corresponds to the off axial A
vosllicients Ay wod A,y On account of the negligiblo effcot of tomporal dis-
persion, the curves do not explicitly depend upon 7. As expected, the curves do
not show any apparent correlation with the variation of f represented in figure 4.
The curves of the A coefficients are very useful in the calculation of the instant-
aneous frequency shift (Sodha et al. 1974, 1976a) for any type of time dependenve
of I, and w. Thus, for g = 100, w = 0:04, p = 0, § = 3, [, = 10, (8], /07) = 10710
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Fiaure 8. I, versus 7/7y, for Iy= 10exp {—12/78}), g = 100,
w = 004 and &t £ = (0) 0, (1) 1, {3) 8, (5) 5.

and (2w/or) = 1074, we predict from the third graphs in figure 5 that the
normalized frequenecy shift is

A~ (—093x10104 36 x 10-1¢) = — (-0264 x 10-10,
Thus, the frequency shift is in general negligibly small,

Figure 7 represents the wariation of I, with (r/71,) for £ — (0) 0, (1) 1, (2) 2,
(4) 4 and [, = 1-5exp(~73/73); Lt = 0) = 1-5 is less than the upper self-
trapping intensity I,. Figure 8 represents the variation of I, with (/7y} for
£=(0)0,(1)1,(3)8, (5)6 and I, = 10exp{—7%/7}); L7 = 0) = 10 is greater
than I, ,. We note that the initial Gaussian i dependence of the intensity is
distorted to such an extent that in many cases the pulse shape develops peaks. In
earlierinvestigations (Sodha et al. 19760, b; Eremin ef al. 1972) restrictod to small
valaes of £ and Ij{r = 0), the development of peaks was not observed. The sort
of pulse-shape distortion observed in the present investigation can be easily
interpreted on the basis of the double-valuedness of the self-trapping intensity.
For high enough values of £, the curves in figure 8 show dips at 7 = 0 because
Io(r = 0) has been chosen to be greater than I , in this case. This prediction may
be easily checked from experiments with very intense laser pulses through
plasmas.
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